If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+6x=76
We move all terms to the left:
6x^2+6x-(76)=0
a = 6; b = 6; c = -76;
Δ = b2-4ac
Δ = 62-4·6·(-76)
Δ = 1860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1860}=\sqrt{4*465}=\sqrt{4}*\sqrt{465}=2\sqrt{465}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{465}}{2*6}=\frac{-6-2\sqrt{465}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{465}}{2*6}=\frac{-6+2\sqrt{465}}{12} $
| r^{2}+8r-50=0 | | 8x–1=23 | | r-4(-5r+6)=4r+10-9 | | 16+24=c^2 | | x−=24≥9x | | F(x)=3x2-6x+7 | | -2x*6=8 | | 9^4x=243 | | 5^(3x+1)=625 | | 6x-1+5x=5x+2-7x | | 1^n=300 | | 4x=-3x-18 | | 2((-1/2^n)+1)=1,99 | | (u+4)^2-72=0 | | -5=4+u | | 4x-5(2x=1)=6x+1 | | 4x-5(2x=1)-6x+5 | | 5^-2y=11 | | 4x-5(2x=1)=0x+-5 | | 4x-5(2x=1)-0x+-5 | | x^2–2.5x+1.5=0 | | x2–2.5x+1.5=0 | | 75=18n-5 | | 4×+2y=22 | | 8-5x8=72 | | 12r=76 | | 3p–57=5p–83 | | 3.)3p–57=5p–83 | | 0=6t-9 | | 6(2x-10)+3(-3x+2)=-120 | | 28-(32x)=92 | | 51=2x-1 |